Concept-Development Practice Page

2-2

Free Fall Speed

1. Aunt Minnie gives you \$10 per second for 4 seconds. How much money do you have after 4 seconds?

- 2. A ball dropped from rest picks up speed at 10 m/s per second. After it falls for 4 seconds, how fast is it going?
- 3. You have \$20, and Uncle Harry gives you \$10 each second for 3 seconds. How much money do you have after 3 seconds?
- 4. A ball is thrown straight down with an initial speed of 20 m/s. After 3 seconds, how fast is it going?
- 5. You have \$50 and you pay Aunt Minnie \$10/second. When will your money run out?_
- 6. You shoot an arrow straight up at 50 m/s. When will it run out of speed?
- 7. So what will be the arrow's speed 5 seconds after you shoot it?
- 8. What will its speed be 6 seconds after you shoot it? 7 seconds?

Free Fall Distance

- 1. Speed is one thing; distance another. Where is the arrow you shoot up at 50 m/s when it runs out of speed?
- 2. How high will the arrow be 7 seconds after being shot up at 50 m/s?

- b. What is the penny's average speed during its 3-second drop?
- c. How far down is the water surface?
- 4. Aunt Minnie didn't get her wish, so she goes to a deeper wishing well and throws a penny straight down into it at 10 m/s. How far does this penny go in 3 seconds?

Distinguish between "how fast, "how far," and "how long"!

Conceptual PHYSICS

U=10t

Straight Up and Down

The sketch is similar to Figure 2.6 in the textbook. Assume negligible air resistance and $g = 10 \text{ m/s}^2$.

• Table 1 shows the velocity data of the figure for t = 0 to t = 8 seconds. Complete the table.

Distances traveled are from the starting point (the displacements).

- Table 2 is for a greater initial velocity. Complete it.
- Table 3 doesn't specify an initial velocity. Choose your own and complete the table accordingly.

3 s	velocity = 0
1	1
2 s	6 4 s
U = 10 m/s	U=-10 m/s I
1	!
1 s ⁻⁰	5 s
U= 20 m/s	υ=-20 m/s
1	1
1	1
1	i
Λ -'	'A' .

Choosing up as +, down as -, $v = v_o - gt$ then falling from rest when $v_o = 0$, v = -gtor $v = -(10^{10})t$

With initial velocity v_o ; $d = v_o t - \frac{1}{2}gt^2$ or $d = v_o t - (5^{\frac{10}{2}s})t^2$ Falling from rest when $v_o = 0$, $d = -(5^{\frac{10}{2}s})t^2$

2.

U=30 m/s U=-30 m/s

	1.		
Time in seconds	Velocity m/s	Distance m	
0	30	0	
1	20		
2	10		
3	0		
4	-10		
5	-20		
6	-30		
7	-40		

Velocity m/s	Distance m	Velocity m/s	Distance m
40	0.		0
			·

Notice g is constant; velocity changes by -10 m/s each second!

U = -40 m/s

8