Physics Variable Descriptions and Measurement | Variable | Definition | Metric | Instrument used to measure | |--|--|------------------------------|--| | | | Units | or steps to calculate quantity | | Mass (m) | Measurement of the amount of stuff in object | grams | Directly measure with balance | | Length, distance (d), Displacement (x), diameter | Measurement of the size of object or how far an object has moved or how far a force is applied to an object | meters | Directly measure with meter stick or ruler | | Volume (V) | Measurement of the amount of space object takes up | Liters or cubic centimeter s | Directly measure with graduated cylinder for liquids, water displacement or mathematical formula for solids | | Time (t), period (T) | Measurement of sequence of events or how long it takes for something to occur or how long a force is applied to an object | second | Directly measure using stopwatch or video camera shutter speed | | Temperature | Measurement of average kinetic energy contained inside an object | Degrees
Celsius | Directly measure with thermometer | | Angle (θ) | Measurement of how
far away one surface
or object is from
being parallel or
perpendicular to
another surface or
object | Degrees | Directly measure with protractor | | Velocity (v), speed | Measurement of how fast an object moves | cm/s, m/s | Measure distance object travels w/ ruler or meter stick Measure time it takes for object to travel that distance with stopwatch or video camera Calculate velocity using equation v= Δx / Δt | | | | | | | Acceleration (a) | Measurement of how fast an object speeds up, slows down or changes direction. a = (v _f -v ₀) / (Δt) | cm/s/s,
m/s/s | Find the initial velocity of the object using the steps for finding a velocity Find the final velocity of the object using the steps for finding the velocity Measure the time interval (Δt) for the velocity to change using a stopwatch or video camera Calculate the acceleration of the object using the equation a= (v_f-v₀) / Δt | |---|---|---|--| | Force (F) | A push or pull,
Examples include
friction, tension of
string, resistive force
of fluid and gravity | Kg m/s ² ,
Newton | Directly measure using spring scale or amount of stretching of rubber band | | Momentum (p) | Quantity of motion = mass x velocity | Kg m/s,
Ns | Measure mass of object with balance Measure velocity of object using steps listed for velocity Calculate the momentum of the object using the formula p = mv | | Gravitational potential energy (PE _g) | Stored energy due to a gravitational field; Near planet's surface $PE_g = mg \Delta h$ where $m=mass$, g the acceleration of gravity=9.8 m/s/s near Earth's surface and $\Delta h = change$ in height object undergoes | Joules,
Nm,
Kg m ² /s ² ,
g m ² /s ² | Measure mass of object with balance Measure the change in height (Δh) the object undergoes with a meter stick or ruler. Upward is positive, downward is negative. Calculate the gravitational potential energy of the object using the formula PE_g = mg Δh | | Kinetic Energy
(KE) | Energy object has due to its motion. KE =1/2 mv ² where m=mass and v = velocity of the object | Joules,
Nm,
Kg m ² /s ² ,
g m ² /s ² | Measure mass of object with balance Measure velocity of object using steps listed for velocity Calculate the kinetic energy of the object using the formula KE =1/2 mv² | | Work (W) | Work = Force x
distance object
moves in direction of
force applied to it | Joules,
Nm,
Kg m ² /s ² ,
g m ² /s ² | Measure force on object using spring scale Measure distance object moves in direction of force using ruler or meter stick. Calculate the work done using the equation W= Fd. |