Date

Concept-Development Practice Page

19–1

Archimedes' Principle I

- 1. Consider a balloon filled with 1 liter of water (1000 cm³) in equilibrium in a container of water, as shown in Figure 1.
 - a. What is the mass of the 1 liter of water?

Figure 1

- 2. As a thought experiment, pretend we could remove the water from the balloon but still have it remain the same size of 1 liter. Then inside the balloon is a vacuum.
 - a. What is the mass of the liter of nothing?
 - b. What is the weight of the liter of nothing?
 - c. What is the weight of water displaced by the massless balloon?
 - d. What is the buoyant force on the massless balloon?

ANYTHING THAT DISPLACES 9.8 N OF WATER EXPERIENCES 9.8 N OF BUOYANT FORCE.

CUZ IF YOU PUSH 9.8 N OF WATER ASIDE THE WATER PUSHES BACK ON YOU WITH 9.8 N

e. In which direction would the massless balloon be accelerated?

Conceptual PHVSICS

3.	Assume the balloon is replaced by a 0.5-kilogram piece of wood that has exactly the same volume (1000 cm³), as shown in Figure 2. The wood is held in the same submerged position beneath the surface of the water.
	a. What volume of water is displaced by the wood? 1000 cm ³
	b. What is the mass of the water displaced by the wood?
	c. What is the weight of the water displaced by the wood? Figure 2
	d. How much buoyant force does the surrounding water exert on the wood?
	e. When the hand is removed, what is the net force on the wood?
	THE BUOYANT FORCE ON A SUBMERGED OBJECT EQUALS THE WEIGHT OF WATER DISPLACED NOT THE WEIGHT OF THE OBJECT ITSELF! UNLESS IT IS FLOATING!
4.	Repeat parts a through f in the previous question for a 5-kg rock that has the same volume (1000 cm ³), as shown in Figure 3. Assume the rock is suspended by a string in the container of water.
	b. WHEN THE WEIGHT OF AN OBJECT IS GREATER THAN THE BUOYANT FORCE EXERTED ON IT, IT SINKS! f. Figure 3
Co	nceptual PHYSICS