RDS: HS.P.F.2	/H	IS.P.F.28	HS.P.F.31	HS.P.F.32_	HS.P.F.35
F.36 HS	S.P.F.37				
ie:	Answ	er ke		Period: _	Date:
Word bank:	Accelerate	Applied	Direction	Friction	Force
	Mass	Motion	Opposite	Related	Velocity

1. In each of the following situations, represent the object with a dot. Draw and label all the forces acting on the object.

HS.P.F.27 I can identify surrounding objects interacting with an object, and the forces they exert on the objects

2. For the following situation, draw a stack of graphs for the objects motion and a draw a free body diagram of the forces acting on the object.

HS.P.F.28	I use multiple diagrams and graphs to represent objects moving at a changing
200	velocity. For example: Motion graphs (x-, v-, a-t), motion map,
	free body diagram, vector addition diagram, system schema

a. A car is traveling to the right and slows to a stop.

Free Body Diagram For The Car

1	
3.	Brian and JT are working on their physics homework and disagree about what the object in the free
	body diagram (below) is doing.

Brian says that the **object is traveling at a** constant velocity to the <u>left</u>.

JT says the object going to the <u>right</u> at a constant velocity.

Explain why Brian's answer is incorrect.

HS.P.F.31

- the object is not traveling at a constant velocity
- the object is not traveling at a constant velocity because it has unbalanced forced.
- the object cannot travel to the left because
and friction always opposses motion.
Explain why part of JT's answer is correct and why part of his answer is incorrect.
correct - the object is traveling to the right because friction 13 pointing left and friction always opposes motion
- is pointing left and friction always opposes motion
incorrect - the object is not travelly at a constant velocity
incorrect - the object is not travely at a constant velocity because it has unbalanced forces.

1	Eartha fallowing descriptions	, please circle the direction of the net force acting on the object.
4.	roi the following descriptions	. Diease circle the direction of the net torce acting on the object
	0	process on sie an ection of the fiet force acting of the object.

I can determine the direction of the net force based on the object's motion. HS.P.F.32

a. A car is traveling to the left and slows down to a stop.

Up	Down	(Right)	Left

b. A sprinter starts from rest and is speeding up to the right.

Up Down (Right)	left

A rocket accelerates upward into space.

(IIn)	Davin	D!-L+	Y
(Op)	Down	Right	Left

d. A skydiver falls from a plane through the air without a parachute.

Up	(Down)	Right	Left

e. A skydiver deploys their parachute slowing them down on their descent.

Down	Right	Left
	Down	Down Right

For the following problems show all of your work for full credit.

I can solve problems using Newton's 2nd Law (F = ma). HS.P.F.35

a. The whale shark is the largest of all fish and can have the mass of three adult elephants. Suppose that a crane is lifting a whale shark into a tank for delivery to an aquarium. The crane must exert an unbalanced force of 2500 N to lift the shark from rest. If the shark's acceleration equals 1.25 m/s2, what is the shark's mass?

$$F = ma$$
 $\frac{2500}{1.25} = \frac{m(1.25)}{1.25}$

b. In drag racing, acceleration is more important than speed, and therefore drag racers are designed to provide high accelerations. Suppose a drag racer has a mass of 1250 kg and accelerates at a constant rate of 16.5 m/s². How large is the unbalanced force acting on the racer?

$$F = ma$$
 $F = (1250)(16.5)$
 $F = 20,625N$

	nswer the following prompts. Be sure to write in complete sentences.	
ŀ	S.P.F.36 I know when two surfaces must be experiencing a friction interaction.	
а. [escribe an instance where friction is helpful. Be as detailed as possible.	
_	- Coming to a stop	
	- lighting a match	
120	U / / X	
<u></u>	- rock climbian	

-	5ks	nnie	ka	lees	on	Pavement
		2)			l
_	no	0:1	8	(-	_	

Describe the other force in the action-reaction force pair.

HS.P.F.37 When given one force, I can describe its Newton's third law force pair.

a. Baseball pushes glove leftwards.

Reaction Force: glose

prohes baseball

ighturo

b. Enclosed air particles push balloon wall outwards.

Reaction Force: balloon wall

pushes air particles

inwards.